

Unia Europejska Europejski Fundusz Rozwoju Regionalnego

Porównanie emisji, zużycia energii i wody pomiędzy bioreaktorami KBT a technologiami klasycznymi w procesie oczyszczania gazów z LZO i odorów: studium przypadku.

Damian Kasperczyk^{a,d*}, Krzysztof Urbaniec^b, Eldon R. Rene^c, Prithula Purna^c, Phong Nguyen^c, Andrea Acosta Figueredo^c, Natalia Ruiz-Gordo^c, Kudrat Ullah^c Jim^c, Patricia Mohedano-Caballero^c, God Ophtanie Jean^c,

^aEkoinwentyka Ltd., Ruda Śląska, Poland; ^bFaculty of Civil Engineering, Mechanics and Petrochemistry, Warsaw University of Technology, Płock, Poland; ^c Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Delft, The Netherlands, ^d Universidad Cooperativa de Colombia, Medellin, Colombia;

• Air pollution treatment and own, innovative technology of air biopurification in CTBB.

Fundusze Europejskie

 For all industry sectors with Volatile Organic Compounds (VOCs) and Odors (H₂S, NH₃) emission problem.

Varodowe Centrum

Unia Europeiska

INTRODUCTION

• Odor sources: agricultural and industrial activities, animal farms, rendering plants, wastewater treatment plants, waste treatment or disposal facilities, paint shops, oil refineries, pulp and paper mills, mushroom farm, various chemical industries and copper – ore mine (KGHM S.A.) etc.

• VOCs and Odors are dangerous

- impairment of the quality of the environment;
- interference with business activities
- Some odoros act as precursors of photochemical oxidation (formation of tropospheric ozone, occurrence of smog).
- harmful to health:
 - cause eye, nose, and throat irritation, damage to liver and kidney,
 - neurological damage

• Odor abatement regulations: Industrial Emissions Directive (IED) 2010/75/EU of the European Parliament

Polska

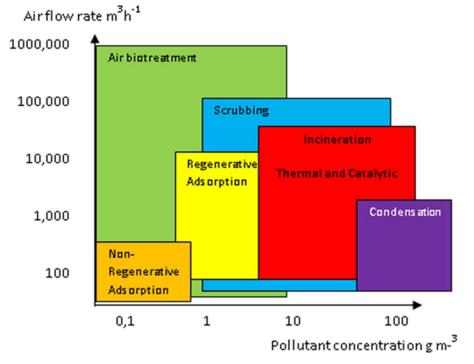
Big Penalties for Noncompliance

1. Up to 500k EUR/ year Penalty

Fundusze Europejskie

If regulations are NOT met...

2. Forced Plant Shutdown


Unia Europejska Europejski Fundusz

Narodowe Centrum Badań i Rozwoju

*

Fundusze

Suitability of various air pollution control technologies. (after Deshusses, M.A., 2003/04)

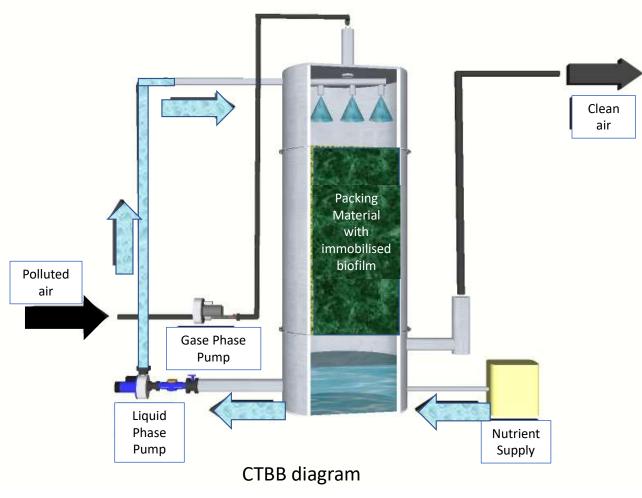
Feature	OUR SOLUTION	Current Alternatives
	(Biopurification)	
Risk for Explosion	✓ SOLVED	X HIGH RISK
Emission charges	✓ SOLVED	X EXPENSIVE
(NOX <i>,</i> CO2)		
ENERGY INTENSIVE	✓ 30 °C	400 – 800 °C
		(e.g.Combustion)
EXPENSIVE COMPONENTS	✓ ECONOMIC	Platinum Pt
	SOLUTION	Active Carbon
	(microorganism)	
Industrial Waste by Products	✓ SOLVED	X HIGH RISK
control of all process	✓ SOLVED	X NO
parameters		(old biofilters)
Acidification & oxidation of	✓ SOLVED	X NO
bed		(old biofilters)

Purpose and scope of research – work.

- Selected experimental results of an on-going project conducted by Ekoinwentyka Ltd.
- Scope and Aims:
- This study used the operational data of an industrial-scale compact trickle bed bioreactor (CTBB) installed in the automotive painting industry by Ekoinwentyka Ltd. for biodegradation of (VOCs).
- The comprehensive data utilized in the present study encompassed critical process variables, including flow rates, water consumption, temperature profiles, and energy consumption. All these data were collected from the same industry, ensuring a robust and representative basis for our analysis.

• <u>Aims:</u>

- (i) to compare the energy consumption, water consumption, and emissions generation of CTBB with those of traditional technologies, namely direct combustion and catalytic combustion,
- (ii) to identify possible green energy alternatives for those technologies and assess their environmental impact,
- (iii) to assess through various parameters which green energy solution is the most feasible and sustainable for the studied technologies.



Methods - Presentation of equipment

PAINTING INDUSTRY: CTBB was implemented for the biodegradation of VOCs contained in the air

Result and discussion Nomenclature:

Measured and assumption:

- $C_{q in}$ = 300 mg/m³ VOC concentration at inlet
- V_g 10 000 m³/h gas phase flowrate,
- V_1 30-90 m³/h liquid flowrate
- T_i 20 °C i 25 °C initial temperature of gas (winter, summer)
- T_0 20 $^{\circ}C$, 400 $^{\circ}C$, 800 $^{\circ}C$ operational temperatur of gas (CTBB, catalytic and direct cumbustion)
- The natural-gas-fired boiler with a heat input <29,300 kW was considered as the main system for the energy production in the combustion processes, and the calculations were done through the United States Environmental Protection Agency (EPA)
- All CO₂ emission factors consider that 100 % of the fuel carbon content is oxidized to CO₂, as recommended by the Intergovernmental Panel on Climate Change (IPCC)

Calculated:

Energy consumption [kJ/h] for each technology was calculated by considering the energy required to heat the incoming airflow rate Q [m3/h] from the initial Ti to the operational temperature To

Energy consumption = Air density $\times c \times (T_0 - T_i) \times Q$

Methane requirement = $\frac{Energy \ consumption}{LHV \ \times \ Density \ \times \ Efficiency}$

Where: LHV [kJ/kg] = lower heating value of methane, Density $[kg/m^3]$ = density of methane, Efficiency [-] = efficiency of methane combustion.

Emissions = Fuel \times HHV \times EF₂

Where: Emissions = Mass of CO_2 , CH_4 , or N_2O emitted, Fuel = Mass or volume of fuel combusted, HHV = Fuel Higher

Heating Value, $EF_2 = Mass$ of CO_2 , CH_4 , or N_2O emission factor per energy unit

Energy produced = VOC produced \times VOC heating value

Energy produced [kJ/d] from VOC produced [kg/d] at known VOC heating value [kJ/kg]

Result and discussion - Energy consumption

Table 1. Comparison of the energy requirement and consumption of the three technologies: CTBB, catalytic combustion, and direct combustion, for air flow rate of 10,000 m³/h and a 300 mg/m³ VOC concentration at the inlet

Technology	Energy requirements [GJ/d]		Daily energy consumption [MWh/d]		Seasonal energy consumption [MWh]		Annual energy consumption [MWh]
	Winter	Summer	Winter	Summer	Winter	Summer	
СТВВ	1.5	0.0	0.4	0.0	72.5	0.0	72.5
Catalytic combustion	110.3	107.0	30.6	29.7	5513.1	5350.1	10863.2
Direct combustion	226.3	221.1	62.8	61.4	11316.3	11056.9	22373.3

Polska

Technology	Energy required	Methane needed		
	MJ/d	kg/yr	m³/yr	
СТВВ	715	7,000	10,600	
Catalytic combustion (400 °C)	107,144	1,042,870	1,587,330	
Combustion (800 °C)	220,668	2147840	3,269,160	

Fundusze

Europejskie

Table 2. Comparison of methane needed for the three technologies according to their energy requirements at an air flow of 10,000 m³/h

Comparison between methane and electricity consumption from an economic perspective – CTBB in Poland.

Narodowe Centrum

Badań i Rozwoju

Unia Europejska Europejski Fundusz

Item	Value	Unit
Energy required per year	72,541	kWh
Methane required per year	7000	kg
	33,153	PLN
Annual cost of natural gas	7450	EUR
	56,945	PLN
Annual cost of electricity	12,797	EUR

Table 3. Costs of methane and electricity for CTBB for airflow rate of 10,000 m³/h

Fundusze

Europejskie

Result and discussion - Emissions generation

Generation of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) represented as CO2eq emissions

Technology		Emissions [t/yr.]					
Technology	CO ₂	NO _x	PM	SO ₂	CO	VOC	
СТВВ	17	0.014	0.001	0.000	0.012	0.001	
Catalytic combustion	2574	2.155	0.164	0.013	1.810	0.119	
Direct combustion	5302	4.439	0.337	0.027	3.728	0.244	

Table 4. Emissions of CO2, NOx, PM, SO2, CO, and VOC due to the use of methane as a fuel for the treatment of airflow of 10,000 m³/h in CTBB, catalytic combustion, and direct combustion

Generation of nitrogen oxides (NOx), particulate matter (PM), sulfur dioxide (SO2), carbon monoxide (CO), and (VOC).

Technology	CO ₂	NO _x	VOCs	SO ₂	СО	РМ
recimology	[t CO ₂ /yr]	[µg/m³ yr]	[mg/m ³ yr]	[µg/m³ yr]	[mg/m ³ yr]	[µg/m³ yr]
СТВВ	55	5,286	0.29	32	4	402
Catalytic combustion	2,648	253,067	13.92	1,518	213	19,233
Direct combustion	5,413	517,367	28.46	3,104	435	39,320

Table 5. Comparison of air emissions (CO2, NOx, VOCs, SO2, CO and PM) of each technology

Rzeczpospolita Polska

Result and discussion - Alternative energy sources

Volatile organic compounds (VOCs) as alternative fuel.

- The heating value of VOCs for the specific composition used in this study was estimated to be approximately 33,000 kJ/kg.

	VOC concentration [mg/m ³]					
	300 600 1,000					
VOC produced [kg/h]	3	6	10			
Energy produced from VOC [MJ/d]	2,365 4,730 7,884					

Table 6. Energy production from VOCs of different concentrations for air flow rate of 10,000 m³/h

Result and discussion - Alternative energy sources – cost analysis

Price component	Electricity	Methane	Solar	Wind	Green hydrogen
Energy production [PLN/MWh]	785	200	335	295	506
Excise duty [PLN/MWh]	5	5	0	0	0
Total incl. VAT [PLN/MWh]	971	251	412	363	622

Table 7. Price of energy production, excise duty, and total price (including 23% VAT) for electricity, methane, solar energy,wind energy, and green hydrogen

	Energy required per		Cost of energy per year [PLN]					
Technology	year [kWh]	Electricity	Methane	Solar	Wind	Green hydrogen		
CTBB	73,325	71,165	18,418	30,213	26,606	45,606		
Catalytic	11,072,045	10,745,973	2,781,044	4,562,236	4,017,491	6,886,480		
combustion	11,072,045	10,743,773	2,701,044	ч,302,230	ч,017,чу1	0,000,400		
Direct	22,804,013	22,132,435	5,727,846	9,396,393	8,274,436	14,183,412		
combustion	22,004,015	22,132,433	5,727,040	9,590,595	0,274,430	14,103,412		

Table 8. Annual cost of energy production necessary to heat 10,000 m³/h of air in CTBB, catalytic combustion, and direct combustion reactor

Fundusze Europejskie

Result and discussion - Environmental Impact Assessment -Health and Social Impact Assessment

Narodowe Centrum Badań i Rozwoju

		Emissions generated per year [t CO ₂ eq]					
Technology	Energy required per year [kWh]	Electricity	Methane	Solar	Wind	Green hydrogen	
СТВВ	73,325	46.928	3.252	0.624	0.122	0	
Catalytic combustion	11,072,045	7,086.108	491.067	94.245	18.424	0	
Direct combustion	22,804,013	14,594.568	1,011.404	194.108	37.946	0	

Rzeczpospolita Polska

Table 9.Yearly tCO2-equivalent emissions produced by each form of energy generation, for an airflow rate of 10,000 m3/h within a CTBB, catalytic combustion, and direct combustion reactors

19th SDEWES Conference, ROME, 08-12.09.2024

Conclusions

- 1. This research presents a comprehensive and in-depth analysis of three distinct technologies employed for the treatment of VOCs emissions: CTBB, direct combustion, and catalytic combustion.
- 2. Direct thermal combustion methods, including thermal and catalytic oxidation, exhibit 308 and 150 times higher energy demands, respectively, compared to CTBB, despite their lower water consumption, due to the need for elevated temperatures to facilitate efficient VOC removal.
- 3. Additionally, lower outflow concentrations of CO2, PM, NOx, SO2, CO, and VOCs indicate the CTBB's superior environmental performance compared to catalytic and direct combustion systems.
- 4. This reduction lessens the environmental impact and reduces emission fees for industries.

5. Further research and development in this area are needed to enhance the capacity of CTBB to handle inlet VOC concentrations higher than 250 ppm. The research also emphasizes the significance of exploring green energy alternatives for enhanced sustainability. Among these alternatives, solar energy and green hydrogen emerge as promising and clean energy sources, offering potential economic and environmental advantages.

Unia Europejska Europejski Fundusz Rozwoju Regionalnego

THANK YOU FOR YOUR ATTENTION!

Prof. UCC. PhD Damian Kasperczyk CEO of Ekoinwentyka Ltd.,

Website: ekoinwentyka.pl E-mail: sekretariat@ekoinwentyka.pl Biotechnology makes a difference!